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m Radical cyclixation of diosphenol ohaloalkyl ethers gives spiro- and fused oxabicycloalkanones. 

The intramolecular addition of a radical to an unsaturated bond is an important synthetic strategy for the 
formation of rings.’ It is notable that the Mexenyl radical cyclixes preferentially to the cyclopentyl- 
methyl radical and not to the (mom stable) cyclohexyl radical2 Be&with3 rationalized this regiochem- 
ical preference twenty-five years ago by postulating a polarized transition state with acceptor character to 
the double bond and with a C---GC angle greater than 900. This transition-state geometry is less con- 
straining in (1, n)-exe ring closures than it is in (1. n+l)-endo ring closums, a fact hue-r elaborated on by 
Baldwin.4 In recent years theoretical calculations have supported the Beckwith transition state model.5 

It occurred to us that the regiochemical outcome of a radical cyclixation might be altered by attachment 
of radical-stabilixing groups to the acceptor double bond.6 ln particular, we speculated that end0 
cyclixation might be favored in radicals derived from diosphenol rc-haloalkyl ethers (of type 1) since the 
resulting radical 4 and presumably the polari& transition state 3 leading to it would be stabilir.edz9* 1 1 

1 2 3 4 5 
To test this hypothesis we prepared 616 and treated its 0.2 M solution in benzene with two equivalents of 
tributyltin hydride at 80 ‘-‘C. Cyclixation is the major reaction: 

6 7t, 33% 7c. 7% 8.47% 9,<2% 

These results can be compared with those of Beckwith ([lo& = 0.21 M [Bu&Hl~ = 0.1 M):17 

Br 

10 11t, 15% llc, 2.7% 12. 21% 13, 61% 
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The functional groups present in 6 promote cyclization since, even with a two-fold excess of Bu&H and 
relatively high initial substrate concentration (0.2 M), little or no simple reduction to 9 is observed.‘s On 
the other hand, it is not clear if any significant stabilization occurs in the en&-cyclization transition state 
since the ratio of endolexo cyclization in 6 is the same as that found in the u&nctionalzed system 10 
(0.85 and 0.84, resp). Because of the possible utility of such fused and spiro oxabicycloalkanones in 
natural products synthesis, we undertook a systematic study of this reaction using a variety of diosphenol 
w-haloalkyl ethers, all as 0.2 M solutions in benzene. The results are presented in the table be10w.r~ 

substrate endo product exo product redn product 

The small amount of 5-e& cyclization in 14 is noteworthy since Cpenten-l-y1 radicals, in genera& do 
not cy~lize.~* 21r We suggest that this effect is due, at least in part, to a change in the required approach 
trajectory for radical additions when substituents are attached to the acceptor double bond. A radical 
approaches an unfunctional&d double bond above and directly behind the p orbital9 (see arrow in 30). 
causing great angle strain in the 5-e& transition state 31. Attachment of a carbonyl group may change 
this required trajectory (see arrow in 32) in accordance with Baldwin’s approach vector analysis,22 so 
that the radical now approaches the double bond above and behind the p orbitals, but also uwyfiom the 
curbonyl group. The consequence of this new trajectory is a less strained transition state 33. The 
substantial cyclization of the 4-phenyM-penten-l-y1 radica12tb can be explained along similar lines. 
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It is notable that 18 cyclizes to a greater extent than 14. The propensity of aryl radicals to add to alkenes 
is rec~gnixed,~~ 23 and may be due to their low stkbility compared with primary alkyl radi~als.~ This 
increased energy produces but a small increase in rate of reaction with tributyltin hydride (AAH’ = 2 
kcal/mole).z but may cause a substantial rate increase in the (mom difficult) addition reaction; thus 

cyclixation is promoted to a greater extent than simple reduction. Analogously, the small amOUnt Of 
cycliaation of 22 can be rationalid in terms of the high stability of the intumediabe benxylic radical. 
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